CARBON-13 NMR SPECTRA OF ent-BEYERANE

AND ent-BEYERENE DERIVATIVES

C. von Carstenn-Lichterfelde, C. Pascual^{*}and J. Pons Facultad de Ciencias. Universidad Autónoma de Madrid. Canto Blanco. Madrid-34.

and

Rosa Ma. Rabanal, B. Rodríguez and S. Valverde^{*} Instituto de Química Orgánica (C.S.I.C.), Juan de la Cierva 3, Madrid-6. Spain. (Received in UK 11th August, 1975; accepted for publication 29th August, 1975)

The tetracyclic diterpenoids are quite widespread in nature. Their biogenesis takes place through the cyclization of suitably oriented pimaradienes¹. As an aid to the structural determination of new compounds of this type, we have analysed the ¹³C NMR spectra of a series of compounds with the *ent*-beyerane skeleton², which also provide a model for the study of steric effects in fairly rigid bridged polycyclic compounds. In this communication we are presenting some preliminary results.

- (1) $R_1 = R_2 = R_3 = R_4 = H$ (3) $R_1 = R_4 = H$; $R_2 = R_3 = OAc$
 - (4) $R_1 = H$; $R_2 = R_3 = R_4 = 0Ac$
 - (5) $R_4 = H$; $R_1 = R_2 = R_3 = 0Ac$
- (2) $R_1 = H$; $R_2 = R_3 = R_4 = OAc$

The ^{13}C NMR signals were assigned by means of single-frequency off-resonance decoupling techniques 3 , by applying known chemical shift rules such as acetylation shifts and steric γ and δ effects 3,4 , and by comparing the spectra of pairs of compounds. Table 1 gives a list of the ^{13}C chemical shifts, δ_{C} , assigned.

Carbon atom	(1)	(2)	(3)	(4)	(5)
C-1	39.7	39.3	38.8	38.6	81.5
C-2	18.5	18.2	18.4	18.3	24.9
C-3	42.0	41.8 ^b	41.9	41.9	39.2
C-4	33.1	32.5	33.1	32.5	32.9
C-5,	56.5	47.7	55.8	47.8	54.9
C-6	20.4 ^b	25.0 ^C	20.0	25.2 ^d	19.7
C-7	41.2 ^C	78.8	36.4	75.2	36.6
C-8	44.9	47.4 ^d	48.3	52.0 ^e	48.6
C-9	56.9	48.5	49.3	44.9	49.2
C-10	37.6	37.3	36.9	36.9	41.6
C-11	20.2 ^b	25.1 ^C	26.4	26.1 ^d	28.7
C-12	40.0 ^C	72.4	68.9	68.4	68.8
C-13	39.2	46.3 ^d	50.8	51.1 ^e	50.5
C-14	57.7	41.6 ^b	49.2	44.9	48.9
C-15	33.6	32.2	139.3	136.6	138.8
C-16	37.6	30.4	131.4	133.1	131.9
C-17	27.1	67.5	65.5	65.2	65.3
C-18	33.7	33.3	33.5	33.2	32.9
C-19	21.9	21.6	21.8	21.6	21.5
C-20	15.1	14.7	14.2	13.7	10.5

Table 1. Carbon-13 Chemical Shifts of *ent*-Beyerane (1,2) and *ent*-Beyerene (3-5) Derivatives.^a

^a The spectra were taken in CDCl₃ on a VARIAN XL-100-15-FT spectrometer. All carbon-13 chemical shifts are given in ppm relative to TMS.

b,C Owing to the closeness of these values, these assignments may be reversed.

^{d,e} These assignments may also be reversed, but those given here are considered to be most likely.

Inspection of Table 1 shows that there is a good agreement between the $\delta_{\rm C}$ values of the ring A carbon atoms of compound 1 and those previously reported for pimaradienes⁵. It may also be noted that the operation of the *anti*-periplanar γ -effect⁶ is clearly observable in the case of both the equatorial acetoxyl group on C-1 (5) and the axial acetoxyl group on C-7 (2,4). A small, but noticeable, *syn*-diaxial effect (downfield shift) may be seen when comparing the chemical shifts of C-20 in the saturated (1 and 2) and unsaturated (3 and 4) series. The signal due to C-11 of compound 5 appears ~2.5 ppm at lower field than in the two other *ent*-15-beyerene derivatives (3 and 4). This shift may be attributed to the presence of an equatorial acetoxyl group on C-1.

We have also applied the rules derived by Beierbeck and Saunders⁷ to the tetracyclic hydrocarbon 1 and found a reasonable agreement between the calculated and the experimental $\delta_{\rm C}$ values (see Table 2) for all the carbon atoms pertaining to rings A, B and C, except for C-8 and C-13 at the bridgehead of the bicyclic C-D ring system. These two carbon atoms are strongly deshielded with regard to the calculated values ($\delta_{\rm C-8}$ exp.= 44.9 ; $\delta_{\rm C-8}$ calc.= 31.3 ; $\delta_{\rm C-13}$ exp.=39.2 ; $\delta_{\rm C-13}$ calc.=29.6). These discrepancies can be attributed to the fact that the rules of Beierbeck and Saunders, which were derived for decalins and polycyclic hidrocarbons with six-membered rings in chair conformation,do not allow for the effect of the bridge carbon atoms C-15 and C-16. For the purpose of these calculations, this effect has been considered equivalent to that of two axially oriented methyl groups on C-8 and C-13.

	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-9	C-10	C-11	C-12	C-14
$\delta_{\rm C} {\rm calc.}^7$	37.0	16.6	41.5	33.1	55.7	17.0	41.5	54.1	36.6	17.0	41.4	53.9
δ _C exp.	39.7	18.5	42.0	33.1	56.5	20.4	41.2	56.9	37.6	20.2	40.0	57.7

Table 2. Experim	ental and ca	alculated ¹	¹³ C chemical	shifts	for	ent-beyerane	(1	1)
------------------	--------------	------------------------	--------------------------	--------	-----	--------------	----	----

Table 3 shows the changes in the δ_{C} values, $\Delta\delta$, of the carbon atoms in rings C and D caused by the introduction of a Δ^{15} in compound 2. It also includes a comparison of these changes with those reported for the corresponding carbon atoms of bicyclo-[3.2.1]-octane and Δ^{6} -bicyclo-[3.2.1]-octane⁸.

	(4)	(2)	Δδ	Δ^6 -Bicyclo- $[3.2.1]$ - octane a	Bicyclo-[3.2.1] - octane a	Δδ
C-8	51.9	47.4	4.5	39.5	35.2	4.3
C-9	44.9	48.5	-3.6	25.2	32.8	-7.6
C-11	26.1	25.1	1.0	18.7	19.1	-0.4
C-12	68.4	72.4	-4.0	25.2	32.8	-7.6
C-13	51.1	46.3	4.8	39.5	35.2	4.3
C-14	44.9	41.6	3.3	45.1	39.7	5.4
C-15	136.6	32.2	104.4	132.1	28.9	103.2
C-16	133.1	30.4	102.7	132.1	28.9	103.2

^a Data taken from ref. 8

The slight discrepancies between the variations $\Delta\delta$ in the two series of compounds possibly reflect small conformational differences between ring C in these tetracyclic terpenoids and the corresponding ring in bicyclo-[3.2.1]-octane.

<u>Acknowledgement</u>. This work was supported by the Comisión Asesora de Investigación Científica y Técnica.

REFERENCES

- (1) J.R. Hanson, "The Tetracyclic Diterpenes", Pergamon Press, London, 1968.
- (2) C. von Carstenn-Lichterfelde, S. Valverde and B. Rodriguez, Aust. J. Chem., <u>27</u>, 517 (1974).
- (3) J.B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, 1972.
- (4) N.K. Wilson and J.B. Stothers, "Stereochemical Aspects of ¹³C NMR Spectroscopy", in "Topics in Stereochemistry", Vol. 8, E.L. Eliel and N.L. Allinger, Editors, John Wiley and Sons, New York, 1974.
- (5) E. Wenkert and B.L. Buckwalter, J. Amer. Chem. Soc., 94, 4367 (1972).
- (6) E.L. Eliel, W.F. Bailey, L.D. Kopp, R.L. Willer, D.M. Grant, R. Bertrand, K.A. Christensen, D.K. Dalling, M.W. Duch, E. Wenkert, F.M. Schell and D.W. Cochran, J. Amer. Chem. Soc., <u>97</u>, 322 (1975).
- (7) H. Beierbeck and J.K. Saunders, Can. J. Chem., 53, 581 (1975).
- (8) J.B. Stothers, J.R. Swenson and C.T. Tan, Can. J. Chem., <u>53</u>, 581 (1975).